An Adjoint Solver For An Industrial Cfd Code Via Automatic

Optimization and Computational Fluid Dynamics
Automatic Mesh Adaptation Using the Continuous Adjoint Approach and the Spectral Difference Method
Topics in Modal Analysis, Volume 10
Marine Design XIII, Volume 1
Some New Directions in Science on Computers
A Coupled-adjoint Method for High-fidelity Aerostructural Optimization
Scientific and Engineering Computations for the 21st Century - Methodologies and Applications
Perspectives in Flow Control and Optimization
New Results in Numerical and Experimental Fluid Mechanics
XLie and non-Lie Symmetries: Theory and Applications for Solving Nonlinear Models
Parallel Computational Fluid Dynamics 2000
Parallel Computational Fluid Dynamics 2007
Design Optimization of Fluid Machinery
Computational Science and Its Applications - ICCSA 2003
Krylov-subspace Methods with Dynamic Deflated Restarting for Solving Adjoint Systems of Equations for Aerodynamic Shape Optimization
Proceedings of the International Conference on Aerospace System Science and Engineering 2019
New Results in Numerical and Experimental Fluid Mechanics
Higher-order Discrete Adjoint ODE Solver in C++ for Dynamic Optimization
Inverse Problems in Engineering Mechanics
Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver
Compressive Sensing of Earth Observations
Computational Fluid and Solid Mechanics
Adjoint-based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines
Computational Financial Mathematics using MATHEMATICA
A Discrete Navier-Stokes Adjoint Method for Aerodynamic Optimisation of BlendedWing-Body Configurations
Robust and Stable Discrete Adjoint Solver Development for Shape Optimisation of Incompressible Flows with Industrial Applications
Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation
The Second-Order Adjoint Sensitivity Analysis
Optimization and Computational Fluid Dynamics

The three-volume set, LNCS 2667, LNCS 2668, and LNCS 2669, constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2003, held in Montreal, Canada, in May 2003. The three volumes present more than 300 papers and span the whole range of computational science from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The proceedings give a unique account of recent results in computational science.

Automatic Mesh Adaptation Using the Continuous Adjoint Approach and the Spectral Difference Method

Computers are used in today's technological world as a powerful tool to simulate many complex phenomena in various fields. This book is an introduction to some of these exciting developments. All the articles are written by experts in their respective fields. Each article teaches by example and the book contains case studies in
fields as diverse as physics, biology, fluid dynamics, astrophysics, device modeling and weather simulation. This book should be of interest to a new researcher as an introduction to an exciting arena of computer applications. It should also benefit expert scientists, providing methods that may apply to their own problems or open up new research possibilities with unlimited promise.

Topics in Modal Analysis, Volume 10

Abstract: "This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods [13, 12, 43, 38]. In our earlier studies [19, 20, 22, 23, 39, 25, 40, 41, 42] it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations [39, 25]. In our most recent works [40, 42] the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet."

Marine Design XIII, Volume 1

This collection of papers presents a broad range of topics in DNS and LES, from new developments in LES modeling to DNS and
LES for supersonic and hypersonic boundary layers. The book provides an extensive view of the state of the art in the field.

Some New Directions in Science on Computers

We formulate a generalized optimization problem for a non-linear dynamical system governed by a set of differential equations. The plant under focus is the 2-D Kolmogorov flow, as this flow has inherent turbulence which would give rise to chaos and intermittent bursts in a selected observable. As a first step, an observable with potential extreme events in its time series is selected. In our case, we choose the kinetic energy of the flow field as the observable under study. The next step is to derive the adjoint equations for the kinetic energy that is the quantity of interest with the velocity field as the optimizing variable. This obtained velocity field forms the precursor for extreme events in the kinetic energy. The prediction capabilities for this precursor are then explored in more detail. The goal is to select the precursor such that it predicts the extreme events in a given time horizon which can generate warning signals effectively. We also present a coupled flow solver in Nek5000 and adjoint solver in MATLAB, the latter can be applied to any dynamical system to study the extreme events and obtain the relevant precursor. In a consecutive section, the results for extreme events in the kinetic energy and the lift coefficient for the flow over a 2-D airfoil are presented. As part of future work, the implementation and application of the solver for the flow past the airfoil and over a 3-D Ahmed body are proposed.

A Coupled-adjoint Method for High-fidelity Aero-structural Optimization

"Due to advances in computing, engineers in the aerospace industry over the past decade have incorporated more advanced numerical algorithms into their computational fluid dynamics (CFD) codes. These advancements have not only allowed routine numerical investigation on the aerodynamic performance of
complete aircraft configurations but the redesign of aircraft geometries through aerodynamic shape optimization (ASO). A fundamental step required for ASO is the computation of gradients of objective functions with respect to design variables; where, adjoint-based methods form the predominant choice. An essential stage in adjoint-based aerodynamic shape optimization is to obtain the Lagrange multiplier by solving a sparse linear adjoint system of equations based on the Jacobian matrices from the converged flow states. Such an approach has been applied widely within the aerospace community for the design of aircraft and other optimization problems for aerospace applications. However, the need to resolve the flow over complex geometries often requires highly stretched grids and gives rise to anisotropic flow fields which increase the stiffness of the discrete Jacobian needed for the solution of the adjoint system. When a generalized minimal residual (GMRES) algorithm preconditioned by an Incomplete LU factorization is used, this stiff linear system requires the use of a large number of Krylov subspace vectors and a high level of fill-in; both require an increase in the amount of memory. Deflated restarting, which distributes spectral eigen-pairs, has proven to be an effective method to enhance the convergence rates when solving an ill-conditioned linear system of equations. In this thesis, a novel adjoint solver based on the Krylov-subspace method is proposed where Krylov subspace basis vectors are dynamically evaluated. The solver is applied within two Krylov subspace solvers; GMRES and the generalized conjugate residual method with an inner orthogonalization (GCRO). The efficiency of the solvers is demonstrated on a series of two-dimensional and three-dimensional benchmark test cases.

Scientific and Engineering Computations for the 21st Century - Methodologies and Applications

Given the explosion of interest in mathematical methods for solving problems in finance and trading, a great deal of research and development is taking place in universities, large brokerage firms,
and in the supporting trading software industry. Mathematical advances have been made both analytically and numerically in finding practical solutions. This book provides a comprehensive overview of existing and original material, about what mathematics when allied with Mathematica can do for finance. Sophisticated theories are presented systematically in a user-friendly style, and a powerful combination of mathematical rigor and Mathematica programming. Three kinds of solution methods are emphasized: symbolic, numerical, and Monte-- Carlo. Nowadays, only good personal computers are required to handle the symbolic and numerical methods that are developed in this book. Key features: * No previous knowledge of Mathematica programming is required * The symbolic, numeric, data management and graphic capabilities of Mathematica are fully utilized * Monte--Carlo solutions of scalar and multivariable SDEs are developed and utilized heavily in discussing trading issues such as Black--Scholes hedging * Black--Scholes and Dupire PDEs are solved symbolically and numerically * Fast numerical solutions to free boundary problems with details of their Mathematica realizations are provided * Comprehensive study of optimal portfolio diversification, including an original theory of optimal portfolio hedging under non-Log-Normal asset price dynamics is presented The book is designed for the academic community of instructors and students, and most importantly, will meet the everyday trading needs of quantitatively inclined professional and individual investors.

Perspectives in Flow Control and Optimization

In this thesis, mesh adaptation using continuous adjoint is tested on two-dimensional Euler equations. Both the flow solver and the adjoint solver are implemented with the high order spectral difference (SD) method. Both h and p adaptation are studied. The test cases include a half-cylinder in subsonic flow and a NACA 0012 airfoil in subsonic and transonic flows. It is found that h-refinement is more suitable for flow discontinuities while p-refinement offers a better performance in smooth flows. Both
adaptation methods lead to a faster functional convergence than uniformly h or p refined meshes. In addition, the adapted meshes show similar patterns as those arrived at using the discrete adjoint method. Comparisons between different adjoint target output functionals are also made.

New Results in Numerical and Experimental Fluid Mechanics X

At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

Lie and non-Lie Symmetries: Theory and Applications for Solving Nonlinear Models

Topics in Modal Analysis, Volume 10: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Experimental Techniques Processing Modal Data Rotating Machinery Acoustics Adaptive Structures Biodynamics Damping

Parallel Computational Fluid Dynamics 2000
Inverse problems can be found in many topics of engineering mechanics. There are many successful applications in the fields of inverse problems (non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc.). Generally speaking, the inverse problems are concerned with the determination of the input and the characteristics of a mechanical system from some of the output from the system. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. Seventy-two papers were presented at the International Symposium on Inverse Problems in Mechanics (ISIP '98) held in March of 1998 in Nagano, where recent developments in the inverse problems in engineering mechanics and related topics were discussed. The main themes were: mathematical and computational aspects of the inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications.

Parallel Computational Fluid Dynamics 2007

Introduces several approaches for solving flow control and optimization problems through the use of modern methods.

Design Optimization of Fluid Machinery

14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal
combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms.

Computational Science and Its Applications - ICCSA 2003

This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30–August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.

Krylov-subspace Methods with Dynamic Deflated Restarting for Solving Adjoint Systems of Equations for Aerodynamic Shape Optimization

Proceedings of the International Conference on Aerospace System Science and Engineering 2019
The aerospace industry increasingly relies on advanced numerical simulation tools in the early design phase. This volume provides the results of a German initiative which combines many of the CFD development activities from the German Aerospace Center (DLR), universities, and aircraft industry. Numerical algorithms for structured and hybrid Navier-Stokes solvers are presented in detail. The capabilities of the software for complex industrial applications are demonstrated.

New Results in Numerical and Experimental Fluid Mechanics VIII

This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book’s primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy.

Higher-order Discrete Adjoint ODE Solver in C++ for Dynamic Optimization

"This work proposes a framework for fully-automatic gradient-based constrained aerodynamic shape optimization in a multistage turbomachinery environment. A turbomachinery solver which solves the Reynolds-averaged Navier-Stokes (RANS) equations to
a steady-state in both rotating and stationary domains is
developed. Characteristic-based inlet and outlet boundary
conditions are imposed, while adjacent rotor and stator rows are
coupled by mixing-plane interfaces. To allow for an efficient but
accurate gradient calculation, the turbomachinery RANS solver is
adjointed at a discrete level. The systematic approach for the
development of the discrete adjoint solver is discussed. Special
emphasis is put on the development of the turbomachinery specific
features of the adjoint solver, i.e. on the derivation of flow-
consistent adjoint inlet and outlet boundary conditions and, to allow
for a concurrent rotor-stator optimization and stage coupling, on the
development of an exact adjoint counterpart to the non-reflective,
conservative mixing-plane formulation used in the flow solver. The
adjoint solver is validated by comparing its sensitivities with finite-
difference gradients obtained from the flow solver. A parallelized,
automatic grid perturbation scheme utilizing radial basis functions,
which is accurate and robust as well as able to handle complex
multi-block grid configurations, is employed to calculate the
gradient from the adjoint solution. A sequential quadratic
programming algorithm is utilized to determine an improved blade
shape based on the gradient information. The functionality of the
proposed optimization method is demonstrated by the redesign of
two different transonic compressor configurations. The design
objective is to maximize the isentropic efficiency while constraining
the mass flow rate and the total pressure ratio. The influence of the
constraints on the design problem is investigated by comparing the
results with those of an unconstrained optimization." --

Inverse Problems in Engineering Mechanics

The Second-Order Adjoint Sensitivity Analysis Methodology
generalizes the First-Order Theory presented in the author’s
previous books published by CRC Press. This breakthrough has
many applications in sensitivity and uncertainty analysis,
optimization, data assimilation, model calibration, and reducing
uncertainties in model predictions. The book has many illustrative
examples that will help readers understand the complexity of the subject and will enable them to apply this methodology to problems in their own fields. Highlights: • Covers a wide range of needs, from graduate students to advanced researchers • Provides a text positioned to be the primary reference for high-order sensitivity and uncertainty analysis • Applies to all fields involving numerical modeling, optimization, quantification of sensitivities in direct and inverse problems in the presence of uncertainties. About the Author: Dan Gabriel Cacuci is a South Carolina SmartState Endowed Chair Professor and the Director of the Center for Nuclear Science and Energy, Department of Mechanical Engineering at the University of South Carolina. He has a Ph.D. in Applied Physics, Mechanical and Nuclear Engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Dept. of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society.

Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver

This is volume 1 of a 2-volume set. Marine Design XIII collects the contributions to the 13th International Marine Design Conference (IMDC 2018, Espoo, Finland, 10-14 June 2018). The aim of this IMDC series of conferences is to promote all aspects of marine design as an engineering discipline. The focus is on key design challenges and opportunities in the area of current maritime technologies and markets, with special emphasis on: • Challenges in merging ship design and marine applications of experience-based industrial design • Digitalisation as technological enabler for stronger link between efficient design, operations and maintenance in future • Emerging technologies and their impact on future designs • Cruise ship and icebreaker designs including fleet compositions to meet new market demands To reflect on the conference focus, Marine Design XIII covers the following research
Read Free An Adjoint Solver For An Industrial CFD Code Via Automatic

Compressive Sensing of Earth Observations

"Symposium Transsonicum" was founded by Klaus Oswatitsch four decades ago when there was clearly a need for a systematic treatment of flow problems in the higher speed regime in aeronautics. The first conference in 1962 brought together scientists concerned with fundamental problems involving the sonic flow speed regime. Results of the conference provided an understanding of some basic transonic phenomena by proposing mathematical methods that allowed for the development of practical calculations. The "Transonic Controversy" (about shock free flows) was still an open issue after this meeting. In 1975 the second symposium was held, by then there was much understanding in how to avoid shocks in a steady plane flow to be designed, but still very little was known in unsteady phenomena due to a lack of elucidating experiments. A third meeting in 1988 reflected the availability of larger computers which allowed the numerical analysis of flows with shocks to a reasonable accuracy. Because we are trying to keep Oswatitsch's heritage in science alive especially in Gottingen, we were asked by the aerospace research community to organize another symposium. Much had been achieved already in the knowledge, technology and
applications in transonics, so IUT AM had to be convinced that a fourth meeting would not just be a reunion of old friends reminiscing some scientific past. The scientific committee greatly supported my efforts to invite scientists actively working in transonic problems which still pose substantial difficulties to aerospace and turbomachinery industry.

Computational Fluid and Solid Mechanics

This volume contains the contributions to the 17th Symposium of STAB (German Aerospace Aerodynamics Association). STAB includes German scientists and engineers from universities, research establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics, mainly for aerospace but also for other applications. Many of the contributions collected in this book present results from national and European Community sponsored projects. This volume gives a broad overview of the ongoing work in this field in Germany and spans a wide range of topics: airplane aerodynamics, multidisciplinary optimization and new configurations, hypersonic flows and aerothermodynamics, flow control (drag reduction and laminar flow control), rotorcraft aerodynamics, aeroelasticity and structural dynamics, numerical simulation, experimental simulation and test techniques, aeroacoustics as well as the new fields of biomedical flows, convective flows, aerodynamics and acoustics of high-speed trains.

Adjoint-based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines

An aerodynamic shape optimisation capability based on a discrete adjoint solver for Navier-Stokes flows is developed and applied to a Blended Wing-Body future transport aircraft. The optimisation is gradient-based and employs either directly a Sequential Quadratic Programming optimiser or a variable-fidelity optimisation method that combines low- and high-fidelity models. The shape
deformations are parameterised using a Bézier-Bernstein formulation and the structured grid is automatically deformed to represent the design changes. The flow solver at the heart of this optimisation chain is a Reynolds averaged Navier-Stokes code for multiblock structured grids. It uses Osher approximate Riemann solver for accurate shock and boundary layer capturing, an implicit temporal discretisation and the algebraic turbulence model of Baldwin-Lomax. The discrete Navier-Stokes adjoint solver based on this CFD code shares the same implicit formulation but has to calculate accurately the flow Jacobian. This implies a linearisation of the Baldwin-Lomax model. The accuracy of the resulting adjoint solver is verified through comparison with finite-difference. The aerodynamic shape optimisation chain is applied to an aerofoil drag minimisation problem. This serves as a test case to try and reduce computing time by simplifying the fidelity of the model. The simplifications investigated include changing the convergence level of the adjoint solver, reducing the grid size and modifying the physical model of the adjoint solver independently or in the entire optimisation process. A feasible optimiser and the use of a penalty function are also tested. The variable-fidelity method proves to be the most efficient formulation so it is employed for the three-dimensional optimisations in addition to parallelisation of the flow and adjoint solvers with OpenMP. A three-dimensional Navier-Stokes optimisation of the ONERA M6 wing is presented. After describing the concept of Blended Wing-Body and

Computational Financial Mathematics using MATHEMATICA

Marine Design XIII collects the contributions to the 13th International Marine Design Conference (IMDC 2018, Espoo, Finland, 10-14 June 2018). The aim of this IMDC series of conferences is to promote all aspects of marine design as an engineering discipline. The focus is on key design challenges and opportunities in the area of current maritime technologies and markets, with special emphasis on: • Challenges in merging ship
design and marine applications of experience-based industrial design. Digitalisation as technological enabler for stronger link between efficient design, operations and maintenance in future. Emerging technologies and their impact on future designs. Cruise ship and icebreaker designs including fleet compositions to meet new market demands. To reflect on the conference focus, Marine Design XIII covers the following research topic series: State of art ship design principles - education, design methodology, structural design, hydrodynamic design; Cutting edge ship designs and operations - ship concept design, risk and safety, arctic design, autonomous ships; Energy efficiency and propulsions - energy efficiency, hull form design, propulsion equipment design; Wider marine designs and practices - navy ships, offshore and wind farms and production. Marine Design XIII contains 2 state-of-the-art reports on design methodologies and cruise ships design, and 4 keynote papers on new directions for vessel design practices and tools, digital maritime traffic, naval ship designs, and new tanker design for arctic. Marine Design XIII will be of interest to academics and professionals in maritime technologies and marine design.

A Discrete Navier-Stokes Adjoint Method for Aerodynamic Optimisation of BlendedWing-Body Configurations

A survey book focusing on the key relationships and synergies between automatic differentiation (AD) tools and other software tools, such as compilers and parallelizers, as well as their applications. The key objective is to survey the field and present the recent developments. In doing so the topics covered shed light on a variety of perspectives. They reflect the mathematical aspects, such as the differentiation of iterative processes, and the analysis of nonsmooth code. They cover the scientific programming aspects, such as the use of adjoints in optimization and the propagation of rounding errors. They also cover "implementation" problems.
Robust and Stable Discrete Adjoint Solver Development for Shape Optimisation of Incompressible Flows with Industrial Applications

The MIT mission - "to bring together Industry and Academia and to nurture the next generation in computational mechanics is of great importance to reach the new level of mathematical modeling and numerical solution and to provide an exciting research environment for the next generation in computational mechanics." Mathematical modeling and numerical solution is today firmly established in science and engineering. Research conducted in almost all branches of scientific investigations and the design of systems in practically all disciplines of engineering can not be pursued effectively without, frequently, intensive analysis based on numerical computations. The world we live in has been classified by the human mind, for descriptive and analysis purposes, to consist of fluids and solids, continua and molecules; and the analyses of fluids and solids at the continuum and molecular scales have traditionally been pursued separately. Fundamentally, however, there are only molecules and particles for any material that interact on the microscopic and macroscopic scales. Therefore, to unify the analysis of physical systems and to reach a deeper understanding of the behavior of nature in scientific investigations, and of the behavior of designs in engineering endeavors, a new level of analysis is necessary. This new level of mathematical modeling and numerical solution does not merely involve the analysis of a single medium but must encompass the solution of multi-physics problems involving fluids, solids, and their interactions, involving multi-scale phenomena from the molecular to the macroscopic scales, and must include uncertainties in the given data and the solution results. Nature does not distinguish between fluids and solids and does not ever repeat itself exactly. This new level of analysis must also include, in engineering, the effective optimization of systems, and the modeling and analysis of complete life spans of engineering products, from design to fabrication, to possibly multiple repairs, to end of service.
Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation

Future remote sensing systems will make extensive use of Compressive Sensing (CS) as it becomes more integrated into the system design with increased high resolution sensor developments and the rising earth observation data generated each year. Written by leading experts in the field Compressive Sensing of Earth Observations provides a comprehensive and balanced coverage of the theory and applications of CS in all aspects of earth observations. This work covers a myriad of practical aspects such as the use of CS in detection of human vital signs in a cluttered environment and the corresponding modeling of rib-cage breathing. Readers are also presented with three different applications of CS to the ISAR imaging problem, which includes image reconstruction from compressed data, resolution enhancement, and image reconstruction from incomplete data.

The Second-Order Adjoint Sensitivity Analysis Methodology

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Marine Design XIII

Standard methods for unsteady optimization carry heavy computational costs and large storage requirements, mostly due to the lengthy time integration involved in the unsteady flow simulations. Such difficulties limit its practical application to cases where the time integration is performed over only a smaller segment of the entire period. The result is a loss of accuracy in the
representation of the physical model. For certain unsteady flows with periodicity, a dramatic reduction in both computational cost and required storage is realized through implementing the Time Spectral method. Furthermore, by introducing an adjoint-based method as an alternative way of obtaining gradient information, computational cost is further reduced. This combination of Time-Spectral and adjoint-based methodology therefore allows for unsteady optimization within a reasonable time frame while maintaining accuracy. In this dissertation, the Discrete Adjoint method is implemented and applied to unsteady flows with periodicity, in the context of the Time Spectral Method. The acquired adjoint gradient information is fed into an optimizer and truly unsteady optimization work is carried out for the first time on a realistic test case. The development and implementation of necessary boundary conditions prove crucial for the successful implementation of the Discrete Adjoint method. As a simple test case, the NACA 0012 airfoil is selected for simulation in steady inviscid, unsteady inviscid, steady viscous, and unsteady viscous flows. In each case, the resulting gradient information obtained from both the adjoint and finite difference method is compared. Upon completion of the airfoil test case, the adjoint-based method is applied to a helicopter blade, UH60, for both steady and unsteady inviscid flows. The gradient information obtained by the adjoint-based method shows good agreement with the conventional, Finite Difference gradient information. The design methodology was developed for a single processor, however, multi-processor capability is also implemented. In order to accommodate realistic meshes, multi-block capability is added as well. With all of the necessary components implemented, optimization is carried out on the UH60 helicopter blade. The objective function is time-averaged torque over all time instances and the optimized result shows an improvement of 5% over the current configuration. Stanford University Multi-block (SUmb), while implementing the unsteady Reynolds-Averaged Navier Stokes equations with multi-block and multi-processor algorithms, is the chosen flow solver. PETSc is employed as the adjoint solver. Successful implementation of the Discrete Adjoint method to unsteady fluids
with periodicity provides the gradient information more easily than the traditional finite difference method which is hindered by its heavy computational cost and large storage requirements. This research establishes a new optimization methodology which utilizes Discrete Adjoint gradient information derived from flow solutions, obtained using the Time Spectral method.

14th International Conference on Turbochargers and Turbocharging

This volume contains results of the German CFD initiative MEGADESIGN which combines CFD development activities from DLR, universities and aircraft industry. Based on the DLR flow solvers FLOWer and TAU the main objectives of the four-years project is to ensure the prediction accuracy with a guaranteed error bandwidth for certain aircraft configurations at design conditions, to reduce the simulation turn-around time for large-scale applications significantly, to improve the reliability of the flow solvers for full aircraft configurations in the complete flight regime, to extend the flow solvers to allow for multidisciplinary simulations and to establish numerical shape optimization as a vital tool within the aircraft design process. This volume highlights recent improvements and enhancements of the flow solvers as well as new developments with respect to aerodynamic and multidisciplinary shape optimization. Improved numerical simulation capabilities are demonstrated by several industrial applications.

Automatic Differentiation of Algorithms

This book is a printed edition of the Special Issue "Lie Theory and Its Applications" that was published in Symmetry

Computational Science and Its Applications - ICCSA 2006

The five-volume set LNCS 3980-3984 constitutes the refereed...
MEGAFLOW - Numerical Flow Simulation for Aircraft Design

Adjoint-based Error Estimation and Grid Adaptation for Functional Outputs from CFD Simulations

Design Optimization of Periodic Flows Using a Time-spectral Discrete Adjoint Method

This study seeks to reduce the degree of uncertainty that often arises in computational fluid dynamics simulations about the computed accuracy of functional outputs. An error estimation methodology based on discrete adjoint sensitivity analysis is developed to provide a quantitative measure of the error in computed outputs. The developed procedure relates the local residual errors to the global error in output function via adjoint variables as weight functions. The three major steps in the error estimation methodology are: (1) development of adjoint sensitivity analysis capabilities; (2) development of an efficient error estimation procedure; (3) implementation of an output-based grid adaptive scheme. Each of these steps are investigated. For the first step, parallel discrete adjoint capabilities are developed for the variable Mach version of the U2NCLE flow solver. To compare and validate the implementation of adjoint solver, this study also develops direct sensitivity capabilities. A modification is proposed
to the commonly used unstructured flux-limiters, specifically, those of Barth-Jespersen and Venkatakrishnan, to make them piecewise continuous and suitable for sensitivity analysis. A distributed-memory message-passing model is employed for the parallelization of sensitivity analysis solver and the consistency of linearization is demonstrated in sequential and parallel environments. In the second step, to compute the error estimates, the flow and adjoint solutions are prolonged from a coarse-mesh to a fine-mesh using the meshless Moving Least Squares (MLS) approximation. These error estimates are used as a correction to obtain highly-accurate functional outputs and as adaptive indicators in an iterative grid adaptive scheme to enhance the accuracy of the chosen output to a prescribed tolerance. For the third step, an output-based adaptive strategy that takes into account the error in both the primal (flow) and dual (adjoint) solutions is implemented. A second adaptive strategy based on physics-based feature detection is implemented to compare and demonstrate the robustness and effectiveness of the output-based adaptive approach. As part of the study, a general-element unstructured mesh adaptor employing h-refinement is developed using Python and C++. Error estimation and grid adaptation results are presented for inviscid, laminar and turbulent flows.

Recent Advances in DNS and LES

Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization Drawing on extensive research and experience, this timely reference brings together numerical optimization methods for fluid machinery and its key industrial applications. It logically lays out the context required to understand computational fluid dynamics by introducing the basics of fluid mechanics, fluid machines and their components. Readers are then introduced to single and multi-objective optimization methods, automated optimization, surrogate models, and evolutionary algorithms. Finally, design approaches and applications in the areas of pumps, turbines, compressors, and
other fluid machinery systems are clearly explained, with special emphasis on renewable energy systems. Written by an international team of leading experts in the field Brings together optimization methods using computational fluid dynamics for fluid machinery in one handy reference Features industrially important applications, with key sections on renewable energy systems Design Optimization of Fluid Machinery is an essential guide for graduate students, researchers, engineers working in fluid machinery and its optimization methods. It is a comprehensive reference text for advanced students in mechanical engineering and related fields of fluid dynamics and aerospace engineering.

MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design

The 20th century saw tremendous achievements and progress in science and technology. Undoubtedly, computers and computer-related technologies acted as one of vital catalysts for accelerating this progress in the latter half of the century. The contributions of mathematical sciences have been equally profound, and the synergy between mathematics and computer science has played a key role in accelerating the progress of both fields as well as science and engineering. Mathematical sciences will undoubtedly continue to play this vital role in this new century. In particular, mathematical modeling and numerical simulation will continue to be among the essential methodologies for solving massive and complex problems that arise in science, engineering and manufacturing. Underpinning this all from a sound, theoretical perspective will be numerical algorithms. In recognition of this observation, this volume focuses on the following specific topics. (1) Fundamental numerical algorithms (2) Applications of numerical algorithms (3) Emerging technologies. The articles included in this issue by experts on advanced scientific and engineering computations from numerous countries elucidate state-of-the-art achievements in these three topics from various angles and
suggest the future directions. Although we cannot hope to cover all
the aspects in scientific and engineering computations, we hope
that the articles will interest, inform and inspire members of the
science and engineering community.

IUTAM Symposium Transsonicum IV

This book gathers selected papers from the 16th UK Heat Transfer
Conference (UKHTC2019), which is organised every two years
under the aegis of the UK National Heat Transfer Committee. It is
the premier forum in the UK for the local and international heat
transfer community to meet, disseminate ongoing work, and
discuss the latest advances in the heat transfer field. Given the
range of topics discussed, these proceedings offer a valuable asset
for engineering researchers and postgraduate students alike.

Advances in Heat Transfer and Thermal Engineering

**Estimation of Precursors for Extreme Events Using the
Adjoint Based Optimization Approach**

Parallel CFD 2000, the Twelfth in an International series of
meetings featuring computational fluid dynamics research on
parallel computers, was held May 22-25, 2000 in Trondheim,
Norway. Following the trend of the past conferences, areas such as
numerical schemes and algorithms, tools and environments, load
balancing, as well as interdisciplinary topics and various kinds of
industrial applications were all well represented in the work
presented. In addition, for the first time in the Parallel CFD
conference series, the organizing committee chose to draw special
attention to certain subject areas by organizing a number of special
sessions. We feel the emphasis of the papers presented at the
conference reflect the direction of the research within parallel CFD
at the beginning of the new millennium. It seems to be a clear
tendency towards increased industrial exploitation of parallel CFD.
Several presentations also demonstrated how new insight is being achieved from complex simulations, and how powerful parallel computers now make it possible to use CFD within a broader interdisciplinary setting. Obviously, successful application of parallel CFD still rests on the underlying fundamental principles. Therefore, numerical algorithms, development tools, and parallelization techniques are still as important as when parallel CFD was in its infancy. Furthermore, the novel concepts of affordable parallel computing as well as metacomputing show that exciting developments are still taking place. As is often pointed out however, the real power of parallel CFD comes from the combination of all the disciplines involved: Physics, mathematics, and computer science. This is probably one of the principal reasons for the continued popularity of the Parallel CFD Conferences series, as well as the inspiration behind much of the excellent work carried out on the subject. We hope that the papers in this book, both on an individual basis and as a whole, will contribute to that inspiration. Further details of Parallel CFD'99, as well as other conferences in this series, are available at http://www.parcfd.org

Copyright code : 1f57219ef04d84f301c1c74a94f273b6